
So, now let us see how to insert a value, inserting a value in a search tree fairly straight

forward, there is only one place because of remember that the tree is listed in order will

give us a shorted list. So, now after adding this value it must second give us a shorted

list, so it is like saying that they was only one place to insert a value in a shorted list. So,

is like insertion in a shorted list, except we have to find that correct place in the tree to

hang it.

So, that when we do this in order traversal, it would be in the correct order when we list

it out. And it turns out that basically we have to find out where it should be by searching

for it and if it is not present, we add it by this search fields. So, for instants if you want to

insert 21, then we will walked down the tree and we will look for the place where we

should find 21. So, it is smaller than 52 we go a left, smaller than 37 we go a left, bigger

than 16 we go right and then we find that at 28 those no value of 21, because there is no

left, so this since it should be to the left it 28, we add it that.

(Refer Slide Time: 22:45)

Now, for instants if we want to insert 65, then we will go right from 52 and now it is 74

we will look left, where they is nothing to the left. So, we will insert ((Refer Time:

22:59)), so it can happen at any position in the tree does not have to be at a leaf node like

a 28, 28 was already a leaf and be inserted 21 below it. But, 74 had a right child, but we

inserted something to it is left, because left child ((Refer Time: 23:11)).

Now, it could be that we said try to insert a value that is already there, for instants in my

prompt to insert 91. So, we look for 91 and we find it, so we will interpret the insertion

479

of 91 has something which does not disturbed it, because we earlier said we do not want

to have duplicate values. So, when we insert we try to find if the fine fields we insert, if

find the succeeds we do nothing.

(Refer Slide Time: 23:35)

So, this is very simple recursive way to do this, so first of all we have a special case

which such as that trees empty, then we just create a new node and point to that node. So,

this is an isolated node which has only a value v parent left and right to the all be nil, on

the other hand if we find it, then we do nothing, now we have not found it. So, now if the

values smaller then the value if the current node and if we have no left child, then we

actually insert.

If we have to go left and we cannot go left, then we create a new node to are left and we

make that node point here by it is parents. So, we create a new node here and we say that

it is parent is ourselves. So, t dot left dot parent is t; otherwise, we just recursively insert

2 are left. So, if you do have a left we recursively insert, if we do not have a left then we

create a node with v, this is the actually insert operation and we make it point towards

through the parent.

Likewise, if we do want to go right and there is no right, we insert it to the right and we

make it point to ourselves through it is parent; otherwise, we recursively insert to the

right, so is the insert to the very straight forward function.

480

(Refer Slide Time: 24:51)

So, how do we delete a node, so with delete says, but we given a value v which we find v

in the tree, you must delete the node containing. So, the basic case that is very simple to

handle is one the node is a leaf node, because then we can just delete it and then it is just

falls of the tree at the bottom. So, for instants if you want to delete 65, then we will

search for 65 find it by the usual mechanism of following the left and right paths.

(Refer Slide Time: 25:24)

And then since it is a leaf node we can just remove this node from the tree and nothing

happens, it remains valid search. Now, sometimes a deleted node might have only one

child, for instance supposing we deletes 74.

481

(Refer Slide Time: 25:35)

So, we come down to 74, now we want to delete this node, but it has the right child, but

now what we can do, you can promote this child, so we can just kind of pertain that this

link goes directly through this to 91.

(Refer Slide Time: 25:51)

So, you just eliminate that node in between and the directly connect 52 to the successor

of the node that is going to be delete. So, if there is only one child in this no problem,

now what if the child delete, child is 2 deleted node as 2 children. So, supposing you

want a delete 37 that is this one.

482

(Refer Slide Time: 26:12)

So, we identify 37 now 37 must go to at we cannot arbitrarily re structure the tree,

because we will have 2 children and we do not know what to do with think. So, now one

strategy that works is to make a whole there to remove the 37 and replace it by either it is

predecessor or successive. So, supposing we identify it is predecessor with predecessor

remember will be the biggest node a maximum in it is left sub trees.

(Refer Slide Time: 26:40)

So, here it will be 28, so what we will do is, we will copy the 28 to this node which is to

be deleted.

483

(Refer Slide Time: 26:43)

So, 37 the node is not be deleted, it is value has been replace by 28, now why is the value

valid, because we want to preserve the shorted thing. So, if we have some list of shorted

values and I delete something here, then what happens is that everything is to the right of

the predecessor. So, I have basically move the predecessor to this point, where preserve

the order between these elements in the shorted order.

So, moving the predecessor here I guaranty there anything that is to their height, remains

bigger then this node and everything to the left remains smaller then this node, because

that was the biggest values. Now of course, I have two copies at 28, so I am was remove

that 28, so then I will focus on the left sub tree and I delete this predecessor value. But,

the good thing of at the predecessor value is that is the right most valued, right most

value means either it is a leaf or it has only left child.

So, we have back in the simpler case one of these two cases. So, we can just delete the

predecessor of the using one of these two cases, either it is going to be a leaf it is just if

also or I am going to promote this 21.

484

(Refer Slide Time: 27:46)

So, in this case the 21 will get on the right, so deleting in general consist of moving the

predecessor to the current value and then deleting the predecessor in the left sub tree.

(Refer Slide Time: 27:58)

So, it is a long piece of code, because we have been many cases, so first of all you with

empty tree we do not nothing to we cannot delete. If form the other hand that value at the

current node is not v, so if it is strictly less then, then it there is something to the left we

delete from there, if it is strictly greater then at there is something to the right we delete

from there, so these are the two recursive cases. So, if it is not strictly less than and not

strictly greeter then in must be equal and we have to do some real deletes. So, now we

have this three cases.

485

(Refer Slide Time: 28:28)

So, the first case actually breaks up in two cases, if it is a leaf it could be a leaf because it

is the root, the root and which is only one node. So, we will treat that slightly differently,

so we will say that if it has no parent that is it is the root, then deleting the value actually

makes it tree empty. So, we just a reset t to t the empty tree nil and the return. If on the

other hand, it is a leaf node it has no children, then what we do is we try to deleted by

just setting the parents value to be nil.

So, supposing I come here and this my leaf node and I want to delete this, then I look up

and then I basically said the right pointer of this to be nil, which is essentially skills of

this link and says that there is no right pointers. So, if the current node is the left child of

it is parent as said the left child with the parent to nil. Otherwise, said the right child with

the parent to null, so this of course, create some garbage because this node is now an

accessible, in accessible from the tree.

But, we assume that this should be recovered and we do not at you worry about it, if you

are doing this in a language likes see, then you have to be very careful to this store this

back to the free space. But, in a other language which have garbage collection, this will

they automatically be restored and garbage collection takes a over, but the point is that

we have just simply removing it by resetting are parents point at be there, so this is the

leaf case.

486

(Refer Slide Time: 29:54)

So, having consider into the leaf case, now let us consider the case if I will delete a node

with a only one child. So, the first case we will look at this, when we have trying to

delete a node which has only a left sub tree. So, left is not nil, right is nil, so what we do

first of all is we look at this imitate left successor. So, this has a parent somewhere about

it, so if first make this left child point directly to the parent.

So, t dot left dot parent is t dot parent, then we look up and we decided whether this is

the left parent or left child or a right child which parent. So, supposing the node we have

is sitting to the left of it is parent, if t dot parent are left is t, then what we do is we make

this point directly.

(Refer Slide Time: 30:54)

487

Now, on the other hand if it was not like this, but it was the other way, so this happen to

be a right child of which parent, then the right child should not point directly, the right

child of the parent is now my left child. So, this the way to splices out a remove this

thing and promote the child they only child are we do a symmetrical thing if it is only the

right child.

(Refer Slide Time: 31:14)

So, we first take the right child and then we restart it is parent to be your own parent and

there after that depending on the case, we either make at this point like this, at this point

like this. So, either t dot parent of left is t dot right, t dot parent of right is t dot left. So, if

I have only one child we just remove the node if effectively from the tree.

(Refer Slide Time: 31:47)

488

And finally, if we have a node with two children, what we do is if we first compute the

predecessor at v and then we said the current nodes value to be the predecessor value and

now we know that this value is duplicate. So, we go the left child and deleted are

remember that when we deleted here, the left child we have deleting what we know is the

maximum value. So, therefore it will have either no children it will be a leaf or it will

have a single child. So, it will not come back to this case it will just stop at the earlier

two cases and it will get successfully deleted. So, there is no problem it is just calling

delete again.

(Refer Slide Time: 32:22)

So, all these operations that we have to describe now walk down a single path. So,

therefore, the worst case complex to any one of these operations is the height of the

current given tree. And if we have maintain some kind of a balance tree like a heat we

saw, then the height is logarithmic in this sides. So, we have n nodes the height is order

log n.

489

(Refer Slide Time: 32:48)

So, you will see in the next lecture how to maintain the balance but, assuming that we

maintain in the balance we have succeeded in what we have achieve, what it wanted to

achieve which is we wanted all these 7 operations to be simultaneously efficient and

there all now log n time. Because, each of them can be achieved in one traversal up or

down a path in the tree.

490

	106106131 Week-8
	lec1
	lec2
	lec3
	lec4
	lec5
	lec6
	lec7
	lec8
	lec9
	lec10
	lec11
	lec12
	lec13
	lec14
	lec15
	lec16
	lec17
	lec18
	lec19
	lec20
	lec21
	lec22
	lec23
	lec24
	lec25
	lec26
	lec27
	lec28
	lec29
	lec30
	lec31
	lec32
	lec33
	lec34
	lec35
	lec36
	lec37
	lec38
	lec39
	lec40
	lec41
	lec42
	lec43
	lec44
	lec45
	lec46
	lec47
	lec48
	lec49
	lec50
	lec51
	lec52
	lec53
	lec54
	lec55
	lec56

