
So, now let us see how to insert a value, inserting a value in a search tree fairly straight 

forward, there is only one place because of remember that the tree is listed in order will 

give us a shorted list. So, now after adding this value it must second give us a shorted 

list, so it is like saying that they was only one place to insert a value in a shorted list. So, 

is like insertion in a shorted list, except we have to find that correct place in the tree to 

hang it. 

So, that when we do this in order traversal, it would be in the correct order when we list 

it out. And it turns out that basically we have to find out where it should be by searching 

for it and if it is not present, we add it by this search fields. So, for instants if you want to 

insert 21, then we will walked down the tree and we will look for the place where we 

should find 21. So, it is smaller than 52 we go a left, smaller than 37 we go a left, bigger 

than 16 we go right and then we find that at 28 those no value of 21, because there is no 

left, so this since it should be to the left it 28, we add it that. 

(Refer Slide Time: 22:45) 

 

Now, for instants if we want to insert 65, then we will go right from 52 and now it is 74 

we will look left, where they is nothing to the left. So, we will insert ((Refer Time: 

22:59)), so it can happen at any position in the tree does not have to be at a leaf node like 

a 28, 28 was already a leaf and be inserted 21 below it. But, 74 had a right child, but we 

inserted something to it is left, because left child ((Refer Time: 23:11)). 

Now, it could be that we said try to insert a value that is already there, for instants in my 

prompt to insert 91. So, we look for 91 and we find it, so we will interpret the insertion 

479



of 91 has something which does not disturbed it, because we earlier said we do not want 

to have duplicate values. So, when we insert we try to find if the fine fields we insert, if 

find the succeeds we do nothing. 

(Refer Slide Time: 23:35) 

 

So, this is very simple recursive way to do this, so first of all we have a special case 

which such as that trees empty, then we just create a new node and point to that node. So, 

this is an isolated node which has only a value v parent left and right to the all be nil, on 

the other hand if we find it, then we do nothing, now we have not found it. So, now if the 

values smaller then the value if the current node and if we have no left child, then we 

actually insert. 

If we have to go left and we cannot go left, then we create a new node to are left and we 

make that node point here by it is parents. So, we create a new node here and we say that 

it is parent is ourselves. So, t dot left dot parent is t; otherwise, we just recursively insert 

2 are left. So, if you do have a left we recursively insert, if we do not have a left then we 

create a node with v, this is the actually insert operation and we make it point towards 

through the parent. 

Likewise, if we do want to go right and there is no right, we insert it to the right and we 

make it point to ourselves through it is parent; otherwise, we recursively insert to the 

right, so is the insert to the very straight forward function. 

480



(Refer Slide Time: 24:51) 

  

So, how do we delete a node, so with delete says, but we given a value v which we find v 

in the tree, you must delete the node containing. So, the basic case that is very simple to 

handle is one the node is a leaf node, because then we can just delete it and then it is just 

falls of the tree at the bottom. So, for instants if you want to delete 65, then we will 

search for 65 find it by the usual mechanism of following the left and right paths. 

(Refer Slide Time: 25:24) 

 

And then since it is a leaf node we can just remove this node from the tree and nothing 

happens, it remains valid search. Now, sometimes a deleted node might have only one 

child, for instance supposing we deletes 74. 
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So, we come down to 74, now we want to delete this node, but it has the right child, but 

now what we can do, you can promote this child, so we can just kind of pertain that this 

link goes directly through this to 91. 

(Refer Slide Time: 25:51) 

 

So, you just eliminate that node in between and the directly connect 52 to the successor 

of the node that is going to be delete. So, if there is only one child in this no problem, 

now what if the child delete, child is 2 deleted node as 2 children. So, supposing you 

want a delete 37 that is this one. 
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So, we identify 37 now 37 must go to at we cannot arbitrarily re structure the tree, 

because we will have 2 children and we do not know what to do with think. So, now one 

strategy that works is to make a whole there to remove the 37 and replace it by either it is 

predecessor or successive. So, supposing we identify it is predecessor with predecessor 

remember will be the biggest node a maximum in it is left sub trees. 

(Refer Slide Time: 26:40) 

 

So, here it will be 28, so what we will do is, we will copy the 28 to this node which is to 

be deleted. 
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(Refer Slide Time: 26:43) 

 

So, 37 the node is not be deleted, it is value has been replace by 28, now why is the value 

valid, because we want to preserve the shorted thing. So, if we have some list of shorted 

values and I delete something here, then what happens is that everything is to the right of 

the predecessor. So, I have basically move the predecessor to this point, where preserve 

the order between these elements in the shorted order. 

So, moving the predecessor here I guaranty there anything that is to their height, remains 

bigger then this node and everything to the left remains smaller then this node, because 

that was the biggest values. Now of course, I have two copies at 28, so I am was remove 

that 28, so then I will focus on the left sub tree and I delete this predecessor value. But, 

the good thing of at the predecessor value is that is the right most valued, right most 

value means either it is a leaf or it has only left child. 

So, we have back in the simpler case one of these two cases. So, we can just delete the 

predecessor of the using one of these two cases, either it is going to be a leaf it is just if 

also or I am going to promote this 21. 
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(Refer Slide Time: 27:46) 

 

So, in this case the 21 will get on the right, so deleting in general consist of moving the 

predecessor to the current value and then deleting the predecessor in the left sub tree. 

(Refer Slide Time: 27:58) 

 

So, it is a long piece of code, because we have been many cases, so first of all you with 

empty tree we do not nothing to we cannot delete. If form the other hand that value at the 

current node is not v, so if it is strictly less then, then it there is something to the left we 

delete from there, if it is strictly greater then at there is something to the right we delete 

from there, so these are the two recursive cases. So, if it is not strictly less than and not 

strictly greeter then in must be equal and we have to do some real deletes. So, now we 

have this three cases. 
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So, the first case actually breaks up in two cases, if it is a leaf it could be a leaf because it 

is the root, the root and which is only one node. So, we will treat that slightly differently, 

so we will say that if it has no parent that is it is the root, then deleting the value actually 

makes it tree empty. So, we just a reset t to t the empty tree nil and the return. If on the 

other hand, it is a leaf node it has no children, then what we do is we try to deleted by 

just setting the parents value to be nil. 

So, supposing I come here and this my leaf node and I want to delete this, then I look up 

and then I basically said the right pointer of this to be nil, which is essentially skills of 

this link and says that there is no right pointers. So, if the current node is the left child of 

it is parent as said the left child with the parent to nil. Otherwise, said the right child with 

the parent to null, so this of course, create some garbage because this node is now an 

accessible, in accessible from the tree. 

But, we assume that this should be recovered and we do not at you worry about it, if you 

are doing this in a language likes see, then you have to be very careful to this store this 

back to the free space. But, in a other language which have garbage collection, this will 

they automatically be restored and garbage collection takes a over, but the point is that 

we have just simply removing it by resetting are parents point at be there, so this is the 

leaf case. 
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(Refer Slide Time: 29:54) 

 

So, having consider into the leaf case, now let us consider the case if I will delete a node 

with a only one child. So, the first case we will look at this, when we have trying to 

delete a node which has only a left sub tree. So, left is not nil, right is nil, so what we do 

first of all is we look at this imitate left successor. So, this has a parent somewhere about 

it, so if first make this left child point directly to the parent. 

So, t dot left dot parent is t dot parent, then we look up and we decided whether this is 

the left parent or left child or a right child which parent. So, supposing the node we have 

is sitting to the left of it is parent, if t dot parent are left is t, then what we do is we make 

this point directly. 

(Refer Slide Time: 30:54) 
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Now, on the other hand if it was not like this, but it was the other way, so this happen to 

be a right child of which parent, then the right child should not point directly, the right 

child of the parent is now my left child. So, this the way to splices out a remove this 

thing and promote the child they only child are we do a symmetrical thing if it is only the 

right child. 

(Refer Slide Time: 31:14) 

 

So, we first take the right child and then we restart it is parent to be your own parent and 

there after that depending on the case, we either make at this point like this, at this point 

like this. So, either t dot parent of left is t dot right, t dot parent of right is t dot left. So, if 

I have only one child we just remove the node if effectively from the tree. 

(Refer Slide Time: 31:47) 
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And finally, if we have a node with two children, what we do is if we first compute the 

predecessor at v and then we said the current nodes value to be the predecessor value and 

now we know that this value is duplicate. So, we go the left child and deleted are 

remember that when we deleted here, the left child we have deleting what we know is the 

maximum value. So, therefore it will have either no children it will be a leaf or it will 

have a single child. So, it will not come back to this case it will just stop at the earlier 

two cases and it will get successfully deleted. So, there is no problem it is just calling 

delete again. 

(Refer Slide Time: 32:22) 

 

So, all these operations that we have to describe now walk down a single path. So, 

therefore, the worst case complex to any one of these operations is the height of the 

current given tree. And if we have maintain some kind of a balance tree like a heat we 

saw, then the height is logarithmic in this sides. So, we have n nodes the height is order 

log n. 
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(Refer Slide Time: 32:48) 

 

So, you will see in the next lecture how to maintain the balance but, assuming that we 

maintain in the balance we have succeeded in what we have achieve, what it wanted to 

achieve which is we wanted all these 7 operations to be simultaneously efficient and 

there all now log n time. Because, each of them can be achieved in one traversal up or 

down a path in the tree. 
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